\(\int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx\) [551]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 127 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\frac {(3 A+B) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \]

[Out]

-1/2*(A-B)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2)+1/4*(3*A+B)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec
(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(3/2)/d*2^(1/2)

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {3034, 4097, 3893, 212} \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\frac {(3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}} \]

[In]

Int[(A + B*Sec[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)),x]

[Out]

((3*A + B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]*Sqrt[Cos[c +
d*x]]*Sqrt[Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) - ((A - B)*Sin[c + d*x])/(2*d*Cos[c + d*x]^(3/2)*(a + a*Sec[c
+ d*x])^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3034

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Csc[e + f*x])^m*((
c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3893

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*b*(d/
(a*f)), Subst[Int[1/(2*b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4097

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] + Dist[(a*A*m + b*B*(m + 1))/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])
^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0
] && LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx \\ & = -\frac {(A-B) \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}+\frac {\left ((3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a} \\ & = -\frac {(A-B) \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}-\frac {\left ((3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d} \\ & = \frac {(3 A+B) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(325\) vs. \(2(127)=254\).

Time = 1.21 (sec) , antiderivative size = 325, normalized size of antiderivative = 2.56 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\frac {\left (-3 \sqrt {2} A \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )-\sqrt {2} B \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )-3 \sqrt {2} A \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x)-\sqrt {2} B \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x)-2 A \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}+2 B \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}+2 B \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) (1+\sec (c+d x))+2 B \arcsin \left (\sqrt {\sec (c+d x)}\right ) (1+\sec (c+d x))\right ) \sin (c+d x)}{4 a d \sqrt {-1+\cos (c+d x)} (1+\cos (c+d x)) \sqrt {\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[(A + B*Sec[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)),x]

[Out]

((-3*Sqrt[2]*A*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]] - Sqrt[2]*B*ArcTan[(Sqrt[2]*Sqrt[Se
c[c + d*x]])/Sqrt[1 - Sec[c + d*x]]] - 3*Sqrt[2]*A*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]
*Sec[c + d*x] - Sqrt[2]*B*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x] - 2*A*Sqrt[
-((-1 + Sec[c + d*x])*Sec[c + d*x])] + 2*B*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])] + 2*B*ArcSin[Sqrt[1 - Sec
[c + d*x]]]*(1 + Sec[c + d*x]) + 2*B*ArcSin[Sqrt[Sec[c + d*x]]]*(1 + Sec[c + d*x]))*Sin[c + d*x])/(4*a*d*Sqrt[
-1 + Cos[c + d*x]]*(1 + Cos[c + d*x])*Sqrt[Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(277\) vs. \(2(104)=208\).

Time = 5.44 (sec) , antiderivative size = 278, normalized size of antiderivative = 2.19

method result size
default \(-\frac {\left (3 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right ) \sqrt {2}+B \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right ) \sqrt {2}+3 A \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+2 A \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}+B \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-2 B \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{4 a^{2} d \left (\cos \left (d x +c \right )+1\right )^{2} \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(278\)

[In]

int((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/a^2/d*(3*A*arctan(1/2*sin(d*x+c)*2^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)*2^(1/2)+B*a
rctan(1/2*sin(d*x+c)*2^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)*2^(1/2)+3*A*2^(1/2)*arctan(1
/2*sin(d*x+c)*2^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))+2*A*sin(d*x+c)*(-1/(cos(d*x+c)+1))^(1/2)+B*2^(
1/2)*arctan(1/2*sin(d*x+c)*2^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))-2*B*sin(d*x+c)*(-1/(cos(d*x+c)+1)
)^(1/2))*cos(d*x+c)^(1/2)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)^2/(-1/(cos(d*x+c)+1))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 376, normalized size of antiderivative = 2.96 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\left [\frac {\sqrt {2} {\left ({\left (3 \, A + B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, A + B\right )} \cos \left (d x + c\right ) + 3 \, A + B\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left (A - B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {\sqrt {2} {\left ({\left (3 \, A + B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, A + B\right )} \cos \left (d x + c\right ) + 3 \, A + B\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 2 \, {\left (A - B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(sqrt(2)*((3*A + B)*cos(d*x + c)^2 + 2*(3*A + B)*cos(d*x + c) + 3*A + B)*sqrt(a)*log(-(a*cos(d*x + c)^2 -
 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c)
- 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*(A - B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x
 + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(sqrt(2)*((3*A + B)*cos(d*x +
 c)^2 + 2*(3*A + B)*cos(d*x + c) + 3*A + B)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x
 + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*(A - B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x +
 c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {A + B \sec {\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \sqrt {\cos {\left (c + d x \right )}}}\, dx \]

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(3/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))/((a*(sec(c + d*x) + 1))**(3/2)*sqrt(cos(c + d*x))), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2166 vs. \(2 (104) = 208\).

Time = 0.49 (sec) , antiderivative size = 2166, normalized size of antiderivative = 17.06 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/4*((3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x +
 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 12*(log(cos(1/2*d*x + 1
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/
2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2 + 3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2
+ 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) +
 1))*sin(2*d*x + 2*c)^2 + 12*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1
) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c)^2 + 2*(6*(
log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2
 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c) + 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2
*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(
1/2*d*x + 1/2*c) + 1) - 2*sin(3/2*d*x + 3/2*c) + 2*sin(1/2*d*x + 1/2*c))*cos(2*d*x + 2*c) + 4*(3*log(cos(1/2*d
*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*
d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 2*sin(1/2*d*x + 1/2*c))*cos(d*x + c) + 4*(3*(log(cos(1/2*d*x +
1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1
/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c) + cos(3/2*d*x + 3/2*c) - cos(1/2*d*x + 1/2*c))*sin(2*d*x +
 2*c) - 4*(2*cos(d*x + c) + 1)*sin(3/2*d*x + 3/2*c) + 8*cos(3/2*d*x + 3/2*c)*sin(d*x + c) - 8*cos(1/2*d*x + 1/
2*c)*sin(d*x + c) + 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*lo
g(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 4*sin(1/2*d*x + 1/2*c))*A/((
sqrt(2)*a*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*a*cos(d*x + c)^2 + sqrt(2)*a*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a*sin(2*d
*x + 2*c)*sin(d*x + c) + 4*sqrt(2)*a*sin(d*x + c)^2 + 4*sqrt(2)*a*cos(d*x + c) + 2*(2*sqrt(2)*a*cos(d*x + c) +
 sqrt(2)*a)*cos(2*d*x + 2*c) + sqrt(2)*a)*sqrt(a)) + (4*(sin(3/2*d*x + 3/2*c) - sin(1/3*arctan2(sin(3/2*d*x +
3/2*c), cos(3/2*d*x + 3/2*c))))*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 8*(sin(3/2*d*x
+ 3/2*c) - sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c),
 cos(3/2*d*x + 3/2*c))) + (2*(2*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1)*cos(4/3*arct
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))
)^2 + 4*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(4/3*arctan2(sin(3/2*d*x + 3/2*c),
 cos(3/2*d*x + 3/2*c)))^2 + 4*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(2/3*arctan2(sin
(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 +
 4*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1)*log(cos(1/3*arctan2(sin(3/2*d*x + 3/2*c),
 cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2
(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - (2*(2*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x +
 3/2*c))) + 1)*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + cos(4/3*arctan2(sin(3/2*d*x + 3/
2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(4/3*ar
ctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3
/2*c)))*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c),
 cos(3/2*d*x + 3/2*c)))^2 + 4*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1)*log(cos(1/3*ar
ctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2
*c)))^2 - 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - 4*(cos(3/2*d*x + 3/2*c) - cos(
1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x +
3/2*c))) - 8*(cos(3/2*d*x + 3/2*c) - cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*sin(2/3*arc
tan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*sin(3/2*d*x + 3/2*c) - 4*sin(1/3*arctan2(sin(3/2*d*x + 3
/2*c), cos(3/2*d*x + 3/2*c))))*B/((sqrt(2)*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 +
4*sqrt(2)*a*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sqrt(2)*a*sin(4/3*arctan2(sin(3/2
*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*sqrt(2)*a*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*
c)))*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*sqrt(2)*a*sin(2/3*arctan2(sin(3/2*d*x +
3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*sqrt(2)*a*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) +
2*(2*sqrt(2)*a*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sqrt(2)*a)*cos(4/3*arctan2(sin(3
/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sqrt(2)*a)*sqrt(a)))/d

Giac [F]

\[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)^(3/2)*sqrt(cos(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int((A + B/cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(3/2)),x)

[Out]

int((A + B/cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(3/2)), x)